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Background

• Texture represents visual characteristics of an object’s surface
• Application: 3D modeling and image editing
• Derivation:  hand-drawn images; real images

• Difficult to obtain planar texture 
• Distortions, perspective issues, and occlusions in real images
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Our Goal

• Obtaining planar textures from degraded textures in real images
• By rectifying distortions, perspective issues and occlusions
• Preserving visual characteristics
• Extending applicability of texture synthesis
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Related Work:  
Exemplar-based Texture Synthesis
• Synthesizing larger texture from small texture sample
    [Efros and Freeman 2001; Liu+ 2020; Mardani+ 2020]

• Texture samples must be square and undistorted

• Difficult to obtain such texture samples:
• Perspective issues, geometric distortions, and occlusions
• Easy to synthesize disappointing texture
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Related Work: 
Texture Scraping [Li+ 2022]
• Texture scraping from real images

• Texture grouping with convolutional networks and graph networks
• Texture synthesis by completing missing regions

• Handle occlusions but ignore geometric distortions
• Generate unsatisfactory results
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Methodology Overview
• First diffusion-based framework for rectifying distortions and occlusions 

in textures
• Occlusion-aware latent transformer
• effectively compute guidance for the generation process

• Novel mechanism for synthetic training dataset construction
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Synthetic Training Dataset Construction

• Collect 22,043 planar texture images from various sources
• Apply transformations and masking on planar textures:
• Homography transformation; Thin Plate Spline transformation; Free-from mask

• Generate various paired texture degradation data
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Figure 2: An overview of the proposed framework. Our synthetic training dataset is constructed by applying random geometric
transformations and free-form masks on planar textures. During the training phase, our framework takes as input both
degraded and planar textures, and performs forward di�usion and reverse sampling processes. Upon completion of the training,
our approach takes as input a degraded texture sample and outputs a recti�ed texture.

Table 1: Architecture of the occlusion-aware latent trans-
former. The input layer takes as input a concatenation of
a sample texture and its corresponding mask. Each Partial-
Conv layer consists of a sequence: a partial convolution layer,
followed by a Batch Norm layer, and then a ReLU layer. At
the end of the latent transformer, the output feature is �at-
tened to a size of 256 ⇥ 1024.

Layer Type Kernel Strides Output Resolution

Input&Mask - - 6 ⇥ 256 ⇥ 256
PartialConv 3 ⇥ 3 2 ⇥ 2 64 ⇥ 128 ⇥ 128
PartialConv 3 ⇥ 3 1 ⇥ 1 128 ⇥ 128 ⇥ 128
PartialConv 3 ⇥ 3 2 ⇥ 2 128 ⇥ 64 ⇥ 64
PartialConv 3 ⇥ 3 1 ⇥ 1 256 ⇥ 64 ⇥ 64
PartialConv 3 ⇥ 3 2 ⇥ 2 256 ⇥ 32 ⇥ 32
PartialConv 3 ⇥ 3 1 ⇥ 1 512 ⇥ 32 ⇥ 32
PartialConv 3 ⇥ 3 1 ⇥ 1 512 ⇥ 32 ⇥ 32
Self-attention 3 ⇥ 3 1 ⇥ 1 512 ⇥ 32 ⇥ 32
PartialConv 3 ⇥ 3 1 ⇥ 1 256 ⇥ 32 ⇥ 32
Flatten layer 3 ⇥ 3 1 ⇥ 1 256 ⇥ 1024

input feature G can either be degraded texture or any intermediate
feature. After each partial convolutional layer, the current mask<

is updated with the following de�nition:

<0 =

(
1, if sum(<) > 0
0, otherwise

. (4)

We apply the partial convolutional layer sequentially eight times,
where the downsampling operation is performed three times. By
repeatedly applying the layer with downsampling operations, we
eventually obtain a valid feature in latent representation. This latent
representation subsequently o�ers valid guidance to the texture
recti�cation process.

3.3.2 Modeling Long-Range Dependencies. While the partial convo-
lutional layers are pro�cient in addressing occlusions, they fall short
in modeling long-range dependencies. Modeling long-range depen-
dencies is crucial for rectifying degraded textures, especially since
valid information in these textures is often sparse due to occlusions.
To address this, we incorporate a self-attention layer [Zhang et al.
2019] at the end of the latent transformer. This allows for the calcu-
lation of non-local relationships from sparse information, thereby
capturing long-range contextual information. This self-attention
layer, which can be construed as a variant of the cross-attention
layer (Eq. 1) with a single input feature, can then generate an out-
put feature that guides the texture recti�cation process through the
subsequent cross-attention layers.
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Qualitative Results on Synthetic Test Images
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Qualitative Results on Real Images
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Failure Cases

• Produce imperfect results under varying lighting conditions and extreme 
distortions
• Possible solutions: 

• Masking regions with significant lighting changes
• Introducing more training data with extreme distortions
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Conclusion

• The first framework for rectifying distortions and occlusions in 
textures

• Introduce a new occlusion-aware latent transformer

• Propose a novel mechanism for synthetic training dataset 
construction

• In-depth evaluation that demonstrates the superior performance of 
the proposed framework
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