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Background

* Texture represents visual characteristics of an object’s surface
* Application: 3D modeling and image editing
e Derivation: hand-drawn images; real images

e Difficult to obtain planar texture
* Distortions, perspective issues, and occlusions in real images

Perspective Distortion and
Issue | Occlusion

Planar
Texture

-, T
\r Sh——

Original Image

Real Image



SIGGRAPH
55
Our Goal

* Obtaining planar textures from degraded textures in real images
* By rectifying distortions, perspective issues and occlusions
* Preserving visual characteristics
* Extending applicability of texture synthesis
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Related Work:
Exemplar-based Texture Synthesis

Real Image

* Synthesizing larger texture from small texture sample

[Efros and Freeman 2001; Liu+ 2020; Mardani+ 2020] - %
e Texture samples must be square and undistorted Texture Sample
m 7 =
 Difficult to obtain such texture samples: ' ﬁ“ B
* Perspective issues, geometric distortions, and occlusions Synthesized Texture

* Easy to synthesize disappointing texture
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Related Work:
Texture Scraping [Li+ 2022]

e Texture scraping from real images
* Texture grouping with convolutional networks and graph networks
* Texture synthesis by completing missing regions

* Handle occlusions but ignore geometric distortions
* Generate unsatisfactory results

Input Image Grouping Texture Input Image Grouping Texture

5



Methodology Overview

* First diffusion-based framework for rectifying distortions and occlusions
In textures

e Occlusion-aware latent transformer
 effectively compute guidance for the generation process

* Novel mechanism for synthetic training dataset construction
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Synthetic Training Dataset Construction

* Collect 22,043 planar texture images from various sources

* Apply transformations and masking on planar textures:
 Homography transformation; Thin Plate Spline transformation; Free-from mask

* Generate various paired texture degradation data
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Qualitative Results on Synthetlc Test Images

VQGAN
[Esser+ 2021]

Input Texture MAT [Li+ 2022]
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Qualitative Results on Real Images

Real Image MAT VQGAN Ours
[Li+ 2022] [Esser+ 2021]



Failure Cases

* Produce imperfect results under varying lighting conditions and extreme
distortions

* Possible solutions:
* Masking regions with significant lighting changes
* Introducing more training data with extreme distortions

Varying Lighting Condition
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Conclusion

* The first framework for rectifying distortions and occlusions in
textures

* Introduce a new occlusion-aware latent transformer

* Propose a novel mechanism for synthetic training dataset
construction

* In-depth evaluation that demonstrates the superior performance of
the proposed framework



