

Diffusion-based Holistic Texture Rectification and Synthesis

<u>Guoqing Hao</u>^{1,2}, Satoshi Iizuka¹, Kensho Hara², <u>Edgar Simo-Serra³, Hirokatsu Kataoka², Kazuhiro Fukui¹</u>

¹University of Tsukuba ²AIST ³Wasada University

³Waseda University

Background

- Texture represents visual characteristics of an object's surface
 - Application: 3D modeling and image editing
 - Derivation: hand-drawn images; real images
- Difficult to obtain planar texture
 - Distortions, perspective issues, and occlusions in real images

Our Goal

- Obtaining planar textures from degraded textures in real images
 - By rectifying distortions, perspective issues and occlusions
 - Preserving visual characteristics
 - Extending applicability of texture synthesis

Real Image

Related Work: Exemplar-based Texture Synthesis

- Synthesizing larger texture from small texture sample [Efros and Freeman 2001; Liu+ 2020; Mardani+ 2020]
- Texture samples must be square and undistorted
- Difficult to obtain such texture samples:
 - Perspective issues, geometric distortions, and occlusions
 - Easy to synthesize disappointing texture

Real Image

Texture Sample

Synthesized Texture

Related Work: Texture Scraping [Li+ 2022]

- Texture scraping from real images
 - Texture grouping with convolutional networks and graph networks
 - Texture synthesis by completing missing regions
- Handle occlusions but ignore geometric distortions
 - Generate unsatisfactory results

Methodology Overview

- First diffusion-based framework for rectifying distortions and occlusions in textures
- Occlusion-aware latent transformer
 - effectively compute guidance for the generation process
- Novel mechanism for synthetic training dataset construction

Synthetic Training Dataset Construction

- Collect 22,043 planar texture images from various sources
- Apply transformations and masking on planar textures:
 - Homography transformation; Thin Plate Spline transformation; Free-from mask
- Generate various paired texture degradation data

Qualitative Results on Synthetic Test Images

Input Texture

VQGAN [Esser+ 2021]

Ours

Ground Truth

Qualitative Results on Real Images

Failure Cases

- Produce imperfect results under varying lighting conditions and extreme distortions
- Possible solutions:
 - Masking regions with significant lighting changes
 - Introducing more training data with extreme distortions

Varying Lighting Condition

Input Image

Rectified Texture

Extreme Distortion

Input Image

Conclusion

- The first framework for rectifying distortions and occlusions in textures
- Introduce a new occlusion-aware latent transformer
- Propose a novel mechanism for synthetic training dataset construction
- In-depth evaluation that demonstrates the superior performance of the proposed framework